

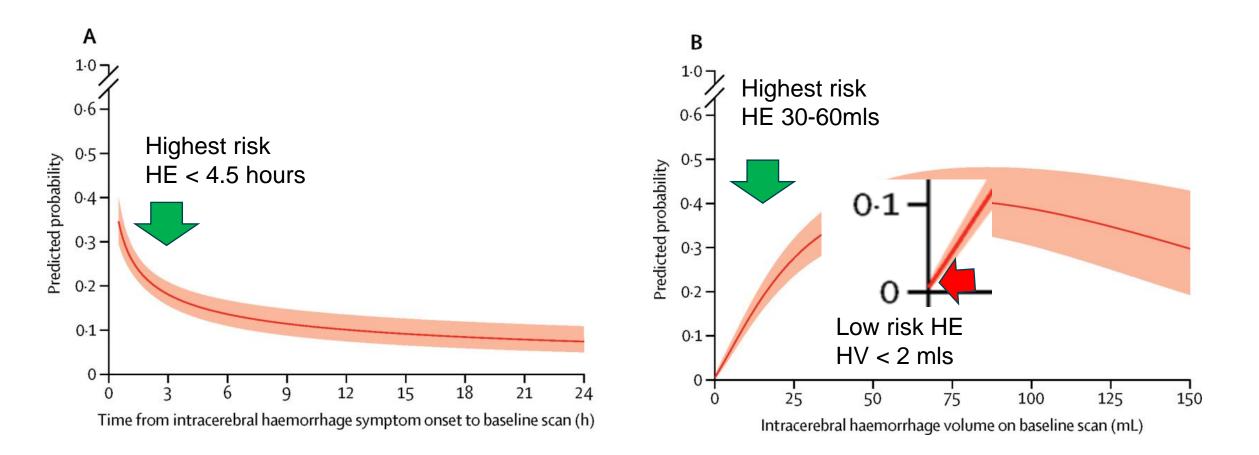
Investigator Meeting Targeting the patients most at risk of haematoma expansion 21/11/24

Stroke Trials Unit, Nottingham

Investigator meeting

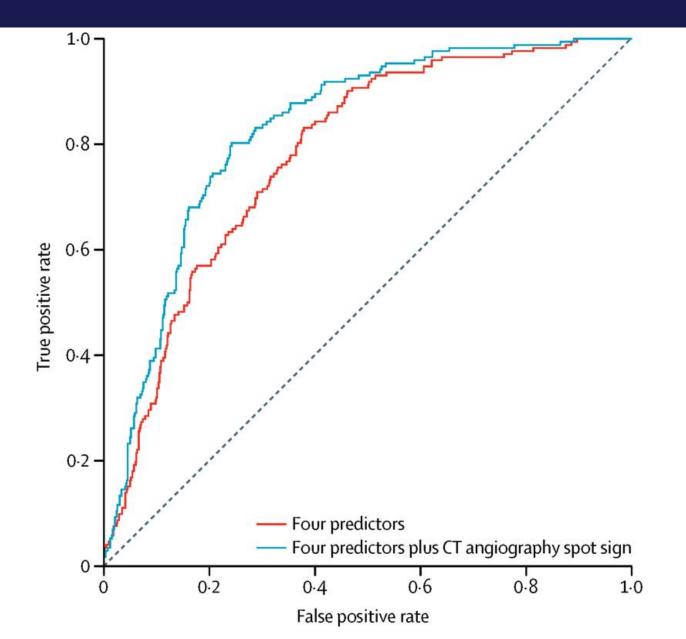
TARGET PATIENTS MOST LIKELY TO BENEFIT

- Please remember we want to target participants that are most likely to benefit from treatment intervention. Patients at the greatest risk are
- If they present very early after the onset of symptoms
- Larger haemotoma volumes
- On antiplatelet therapy or anticoagulants
- CT markers of haemotoma expansion such as black hole or blend sign <u>https://doi.org/10.1161/STROKEAHA.119.026128</u>



Investigate whether tranexamic acid improves early death in those presenting with a spontaneous ICH with in 4.5 hours

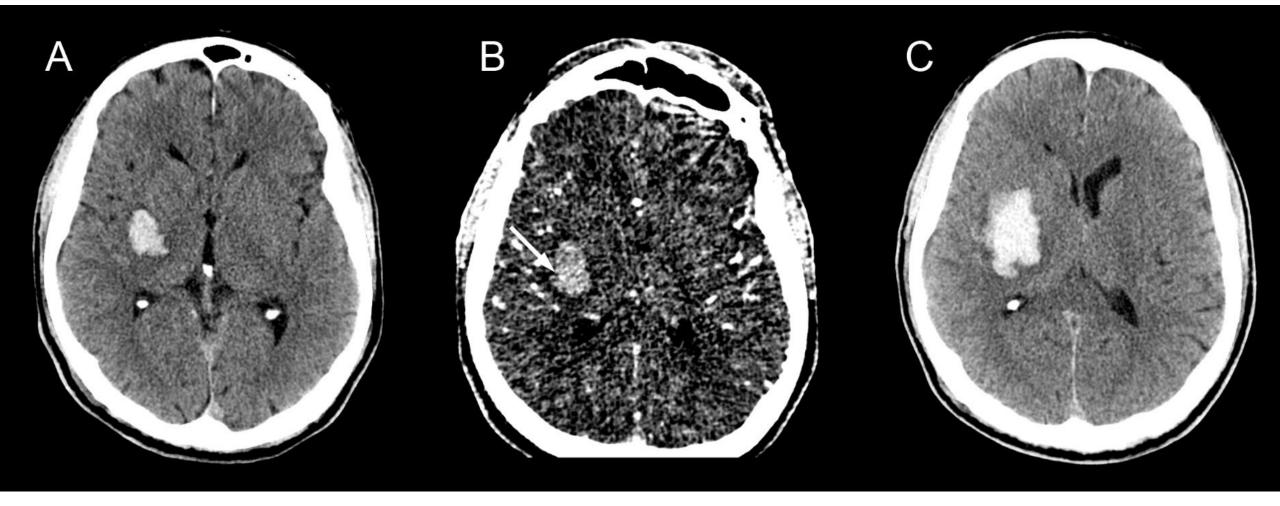
Tranexamic acid plays a role in halting haematoma expansion


Haemorrhage growth by time and volume

Predicted probability of intracerebral haemorrhage growth >6 mL

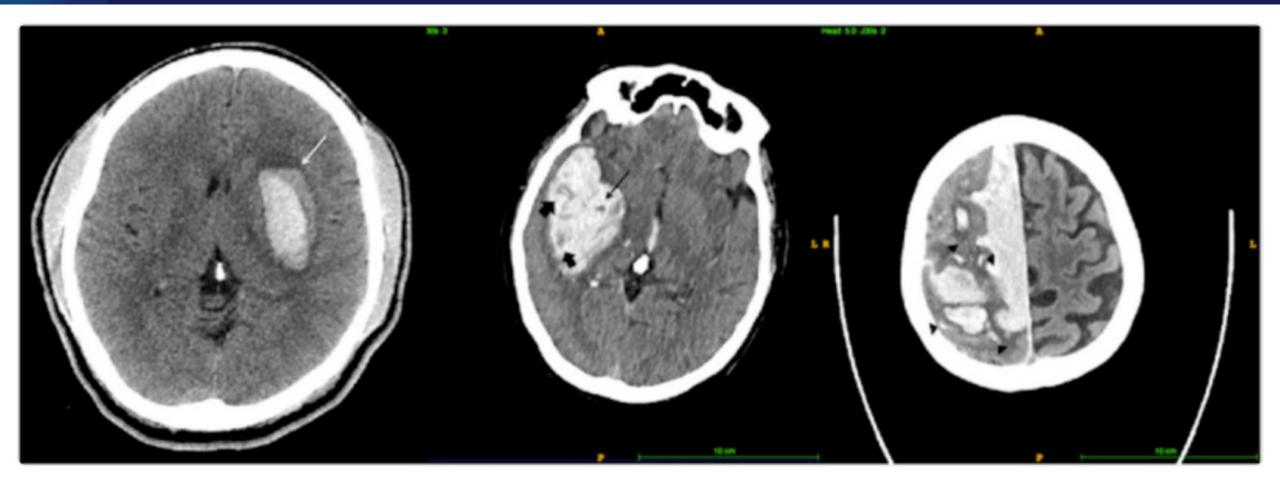
Al-Shahi Salman R et al Neurol. 2018. doi: 10.1016/S1474-4422(18)30354-5..

CTA spot sign and haematoma expansion



Characteristic curves for the predicted probability of intracerebral haemorrhage growth >6 mL

- Time from symptom onset to baseline imaging [h]
- Intracerebral haemorrhage volume on baseline imaging [ml]
- Antiplatelet therapy at symptom onset
- Anticoagulant therapy at symptom onset
- CT spot sign positive


CTA Spot Sign

Case courtesy of Christen Barras, Radiopaedia.org, rID: 24481 6

Non-contrast CT markers

BLACK HOLE SIGN HYPODENSITIES

ISLAND SIGN

Law ZK, et al Stroke. 2020 Jan;51(1):121-128. doi: 10.1161/STROKEAHA.119.026128.

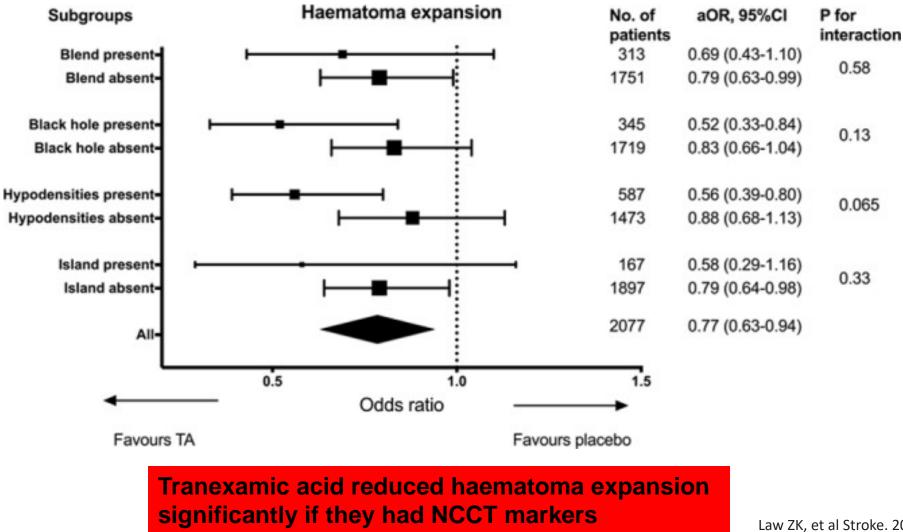
Baseline Differences

Hematoma location	Total	HE (+)	HE(-)	P Value	
Supratentorial lobar	688 (29.6%)	206 (36.3%)	396 (26.4%)	<0.001	
Supratentorial deep	1451 (62.4%)	332 (58.6%)	1011 (67.5%)	<0.001	
Infratentorial	145 (6.2%)	29 (5.1%)	91 (6.1%)	0.41	
Previous antiplatelet therapy	611 (26.3%)	164 (28.8%)	357 (23.7%)	0.016	
Onset-to-CT time (median, h)	1.9 (1.4–2.8)	1.8 (1.3–2.5)	² Haemat	toma Expa	ansion i
Onset-to-CT time (mean, h)	2.3 (1.3)	2.0 (1.1)		ikely to o	
Hematoma volume, mL				obar blee	
ICH only (median, IQR)	13.3 (5.5–32.4)	21.4 (7.7-44.2)	10		
ICH only, categorical				tiplatelet	
<30 mL	1651 (72.6%)	345 (60.5%)		nes of 30	-60ml
30–60 mL	365 (16.1%)	143 (25.1%)		ogical Ma	rkers c
>60 mL	257 (11.3%)‡	82 (14.4%)		HE	
ICH+IVH (median, IQR)	16.3 (6.3-37.4)	23.8 (9.1–50.8)	13.2 (5.3–29.1)	<0.001	
Blend sign	366 (16.1%)	133 (23.3%)	180 (11.9%)	<0.001	
Black hole sign	414 (18.2%)	130 (22.8%)	218 (14.5%)	<0.001	
Hypodensities	701 (30.2%)	225 (39.5%)	365 (24.3%)	<0.001	
Island sign	200 (8.8%)	65 (11.4%)	102 (6.8%)	0.001	8

Relationship to Haematoma Expansion

	Unadjusted OR	P value
Blend sign	2.25 (1.75-2.88)	< 0.001
Black hole sign	1.75 (1.37-2.23)	< 0.001
Hypodensities	2.04 (1.66-2.51)	< 0.001
Island sign	1.77 (1.28-2.46)	0.001

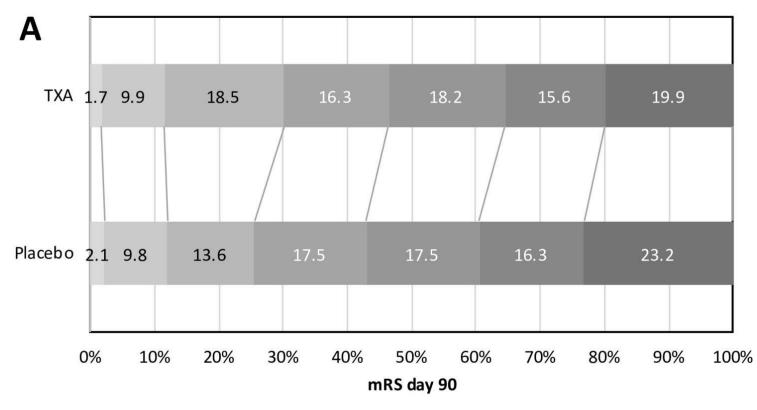
Relationship to Death and Dependency (mRS>=4)


	Unadjusted OR	P value
Blend sign	1.95 (1.54-2.47)	< 0.001
Black hole sign	2.49 (1.97-3.15)	< 0.001
Hypodensities	2.50 (2.07-3.03)	< 0.001
Island sign	7.29 (4.68–11.35)	< 0.001

Plain CT markers have been associated to greater risk of haematoma expansion and worse functional outcomes at 90 days.

Ideal candidates for TICH 3

NCCT signs and haematoma expansion

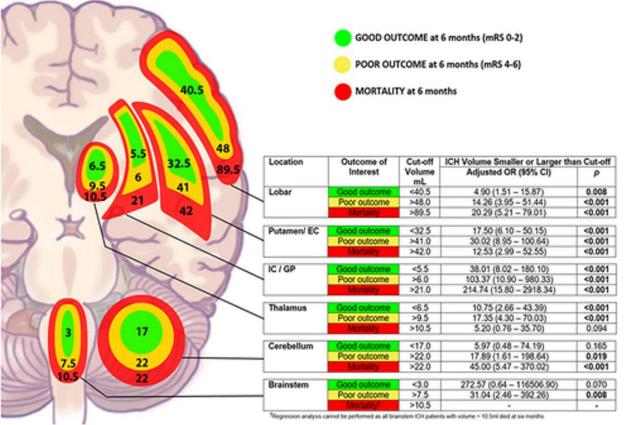

10

Law ZK, et al Stroke. 2020 Jan;51(1):12¹/₂ 128. doi: 10.1161/STROKEAHA.119.026128.

Remember to treat BP

In the subgroup of patients who received TXA and had BP <170 had better functional outcomes compared to placebo.

cOR 0.73, 95% CI 0.59 to 0.91, p=0.005


J P Appleton et al BMJ Neurology Open 2023;5:e000423.

Why haematoma location matters

Location-specific Hematoma Volume Cut-off and Clinical Outcomes in Intracerebral Hemorrhage

STUDY QUESTIC	ON: What are the hematoma volume cut-offs in predicting neurological outcomes for different ICH locations?
POPULATION	: 533 consecutive ICH patients from the University of Hong Kong stroke registry Patients with pre-morbid mRS >2 or who underwent neurosurgical treatment were excluded

180.10) <0.001 -980.33) <0.001 2918.34) <0.001

> Teo KC Stroke. 2023 doi: 10.1161/STROKEAHA.122.041246.

Tolerability of haematoma volumes

is also dependent on location

This study showed that lobar

volumes compared to deeper

bleeds such as brainstem

bleeds can tolerate much larger

CONCLUSION

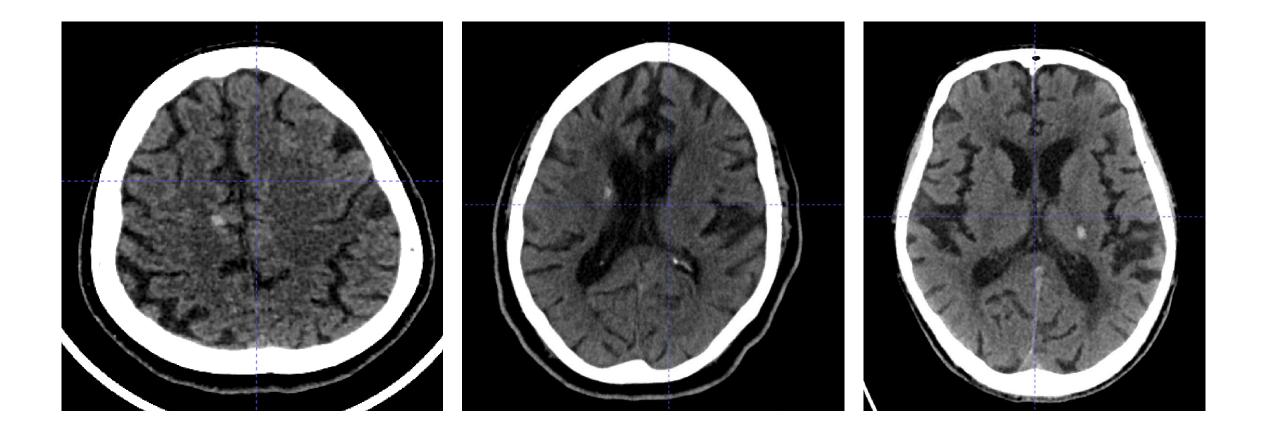
: ICH outcomes differed significantly with location-specific hematoma size. Location-specific volume cutoff should be considered in patient selection for ICH trials.

TICH 3 Haematoma Volumes <5ml

Haematoma Volumes	/1324
<0.5 ml	14 (0.1%)
<1 ml	37 (2.8%)
<5ml	340 (25.7%)

Clinical Characteristics at Randomisation in UK

		Patients		
Variable	Statistic	N	All	
Number of patients randomised	N		643	
Scan Details				
Haematoma location				
Supra-tentorial Lobar	Yes (%)	643	162 (25.2)	
Supra-tentorial Deep	Yes (%)	643	418 (65.0)	
Infra-tentorial	Yes (%)	643	52 (8.1)	
Combination: All types	Yes (%)	643	11 (1.7)	
Intraventricular Haemorrhage (IVH) present	Yes (%)	643	71 (11.0)	
Haematoma volume	Mean (SD) {range}	638	17.2 (16.8) {0.1, 98.4}	
>66 mL, n (%)	n (%)	643	7 (1.1)	
<5 mL, n (%)	n (%)	643	177 (27.5)	
<4 mL, n (%)	n (%)	643	145 (22.6)	
<3 mL, n (%)	n (%)	643	97 (15.1)	
<2 mL, n (%)	n (%)	643	61 (9.5)	



Deaths within patients with small haematoma<2ml

	Patients		
Variable	Statistic	N	All
Patients randomised with haematoma< 2ml	N	107	107
Time to deaths (cumulative)			
Death by day 7	Yes, <u>n(</u> %)	107	2 (1.9)
Death by day 14	Yes, <u>n(</u> %)	107	2 (1.9)
Death by day 28	Yes, <u>n(</u> %	107	2 (1.9)
Death by day 180	Yes, <u>n(</u> %)	107	3 (2.8)

Some examples

There are predictors of haematoma expansion to look out for: • Lobar bleeds • Prev antiplatelet therapy • Volumes of 30-60ml • Radiological Markers of HE on CT scans

These are the patients that will be ideal recruits for the TICH 3 Trial

THANK YOU ANY QUESTIONS